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We investigate the properties of quantum systems whose classical counterpart presents intermittency. It is
shown, by using recent semiclassical techniques, that the quantum spectral correlations of such systems are
expressed in terms of the eigenvalues of an anomalous diffusion operator. For certain values of the parameters
leading to ballistic diffusion and 1/f noise the spectral properties of our model show similarities with those of
a disordered system at the Anderson transition. In Hamiltonian systems, intermittency is closely related to the
presence of cantori in the classical phase space. We suggest, based on this relation, that our findings may be
relevant for the description of the spectral correlations of Hamiltonians with a classical phase space homoge-
neously filled by cantori. Finally we discuss the extension of our results to higher dimensions and their relation
to Anderson models with long-range hopping.

DOI: 10.1103/PhysRevE.69.066216 PACS number(s): 05.45.Df, 72.15.Rn, 71.30.1h, 05.40.2a

The quantum properties of a disordered system, namely, a
noninteracting particle in a random potential are strongly af-
fected by both the dimensionality of the space and the
strength of disorder. In less than three dimensions the wave
functions are localized in the thermodynamic limit for any
amount of disorder. In three and higher dimensions there
exists a metal insulator transition(MIT ) for a critical amount
of disorder. Thus for disorder below the critical one the wave
functions are extended through the sample, the Hamiltonian
is accurately approximated by a random matrix with the ap-
propriate symmetry, and the spectral correlations are given
by Wigner-Dyson(WD) statistics[1]. In the opposite limit,
wave functions are exponentially localized and the spectral
correlations are described by Poisson statistics. A similar
situation occurs in “quantum chaos.” The celebrated
Bohigas-Giannoni-Schmit conjecture[2] states that the WD
statistics applies to the spectral correlations of quantum sys-
tems whose classical counterpart is chaotic. On the other
hand, it is broadly accepted[3] that Poisson statistics de-
scribes the spectral correlations of quantum systems whose
classical counterpart is integrable.

Deviations from WD statistics due to wavefunction local-
ization has been intensively investigated in recent years. In
disordered systems, they are expressed through the dimen-
sionless conductanceg=Ec/D whereEc=" / tc is the Thou-
less energy,tc is the classical time to cross the sample diffu-
sively and D is the quantum mean level spacing. In the
metallic regimeg→` and WD statistics applies. Nonpertur-
bative corrections due to a finiteg@1 were recently evalu-
ated by Andreev and Altshuler[4] in the framework of the
supersymmetry method[5]. They managed to express the
two level spectral correlation function in terms of the spec-
tral determinant of the classical diffusion operator. In the
context of quantum chaos deviations from WD statistics are
expected due to the nonuniversality of short periodic orbits
(here we do not discuss other sources of deviation as dy-
namical localization or a mixed phase space). In a recent
development[6], the two level spectral correlation function
encoding such deviations was found to be related to the spec-
tral determinant of the classical Perron-Frobenius operator
which controls the evolution of the classical phase space.

Unfortunately explicit results are hard to obtain since there is
no general recipe to compute the eigenvalues of this operator
for a generic classical Hamiltonian.

As disorder strength further increasesg,1 localization
effects become dominant and eventually the system under-
goes a MIT. At the MIT, the wave function momentsPq
present anomalous scaling with respect to the sample size[7]
L, Pq=eddr ucsr du2q~L−Dqsq−1d, where Dq is a set of expo-
nents describing the transition. Wave functions with such a
nontrivial scaling are said to be multifractal(for a review see
Ref. [8]). Spectral fluctuations at the MIT(commonly re-
ferred to as “critical statistics”[9]) are intermediate between
WD and Poisson statistics. Typical features include: scale
invariant spectrum[10], level repulsion, and sub-Poisson
number variance[11]. Different generalized random matrix
model have been successfully employed to describe critical
statistics[12].

A natural question to ask is whether critical statistics is
related to any kind of classical motion. We shall show that,
for a certain range of parameters, the spectral correlations of
quantum systems whose classical counterpart presents inter-
mittency [13] and 1/f noise are described by critical statis-
tics. This is the main result of this work. We also suggest that
our results may be useful to describe the spectral correlations
of non-KAM Hamiltonians with a classical phase space ho-
mogeneously filled by cantori. The organization of the paper
is as follows: Classical intermittency is introduced by study-
ing the evolution of a simple nonlinear map. In the context of
Hamiltonian systems, we also discuss its relation with clas-
sical phase space structures Quantum spectral correlations
associated with classical intermittency are then investigated
by using the above mentioned semiclassical Andreev-
Altshuler formalism. Finally we discuss the extension of our
results to higher dimensions and its relation with Anderson
models with long range hopping.

I. CLASSICAL INTERMITTENCY

The phenomenon of intermittency is characterized by
long periods of laminar(regular) motion interrupted by short
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irregular bursts[13]. As a simple example of a dynamical
system with such features we investigate the following map
on the real line[13,14]: xn+1= fsxnd, where fsxd verifies
fsxd=−fs−xd and fsx+Nd= fsxd+N with N an integer. With
the above rules the map needs to be defined only in a re-
stricted intervalfsxnd=s1+edxn+auxnuz−1, 0,xn,1/2, with
z anda real numbers ande→0 is a small control parameter
utilized to set the scale of the laminar phase. The laminar
motion has its origin at pointsxn,N wherexn+1,xn±1 and
thus the orbit is transfered to the same position in the neigh-
boring cell. In a continuous time this corresponds to ballistic
motion. Eventually the orbit leaves the regionx,N and the
dynamics becomes chaotic. The duration of the chaotic phase
is typically much shorter than the ballistic one. We mention
that due to universality[15], intermittency appears for any
fsxd with a Taylor expansion forx!1 given by the above
relation. In Ref.[14] it was found that the density of prob-
ability of staying in the laminar phase a timet (or a distance
r) has a power law tail

cst,rd ,
b̂

s1 + rdmdsur u − b̂td, s1d

where b̂=2za+e /2 and m=z/ sz−1d. Indeed the motion is
superdiffusive[14] for 2,m,3 and ballistic for 1,mø2.
Based on the above result, Zumofen and Klafter[19] calcu-
lated the probabilityPsr ,td to be at locationr at timet in the
framework of the continuous random walk model

Pss,kd ,
1

is + bukum−12 ø m ø 3,

s2d
sm−2

ism−1 + bukum−11 , m , 2,

wherePss,kd is the Fourier transform ofPsx,td andb, b̂ up
to factors of order the unity. For 2,mø3, the above equa-
tion is a solution of the following fractional Fokker Planck
equation(for a recent review see Ref.[20]),

]Psx,td
]t

−
b

2

]m−1

]uxum−1Psx,td = dsxddstd, s3d

where we define the fractional derivative as in Ref.[20].
The phenomenon of intermittency in Hamiltonian systems

has been related[21,22] to the presence of cantori[23] in
phase space. A trajectory is typically trapped in the intricate
cantori structures for times “long” as compared with those
involved in the transport through the pure chaotic phase
space. Meiss and co-workers[21] described the transport
through cantori in phase space as a random walk in a Bethe
lattice. Such a simplified model predicts a power law tail for
the waiting times inside a cantori in agreement with numeri-
cal simulations[24]. Details of the distribution as the decay
exponent are sensitive to the scaling properties of the cantori
which depend on the considered energy and are thus nonuni-
versal. Since waiting times in phase space lead to ballistic
motion in real space[22], a trajectory in real space is a
mixture of long ballistic flights governed by a power-law

distribution eventually interrupted by random walks when
the trajectory escapes from the cantori region. The above
simplified model cannot, in principle, describe the full com-
plexity of typical KAM Hamiltonians with a mixed phase
space where cantori with different scaling properties coexist
with pure chaotic and integrable components(for a recent
investigation in this direction see Ref.[25]). A different situ-
ation occurs in Hamiltonians in which, due to the nonanaly-
ticity of the classical potential, the KAM theorem does not
hold. In certain cases[26], as a parameter is switched on, the
whole classical phase space undergoes an abrupt transition
from integrable to homogeneously filled with cantori. The
absence of additional classical structures permits in this case
utilize the formalism above explained though the details of
Psr ,td may depend on the considered energy. Others class of
systems with similar properties is that of pseudointegrable
billiards [16], the phase space is also fractal and the classical
motion presents anomalous transport properties[17,18].

II. QUANTUM MANIFESTATIONS OF CLASSICAL
INTERMITTENCY

We now investigate quantum manifestations of classical
intermittency by using semiclassical techniques. Our starting
point is the study of the connected two level correlation
function

R2ss,gd = D2krse − s/2drse + s/2dl − 1, s4d

wherersed is the density of states at energye, D is the mean
level spacing, the energys is expressed in units ofD, and the
averaging is over an ensemble for disordered systems and
over an interval of energy for single deterministic chaotic
systems. The spectral properties depend on the ratio
g=Ec/D. In the ergodic limitg→`, the Hamiltonian can be
accurately approximated by a random matrix with the appro-
priate symmetry and WD statistics applies. For instance, for
broken time reversal invarianceR2ss,0d=−sin2spsd /p2s2.
Perturbative corrections(g@1 and s@1) to this result are
evaluated[11] by simple perturbation theory,

R2
pertss,gd =

1

2p2 Reo
n

P2sen,sd,

wherePsen,sd is the propagator of the diffusion equation[in
our case Eq.(2)], en are the eigenvalues of the diffusion
equation, andn runs over the integers. As expected, the low-
est moden=0 reproduces the asymptotic form of the WD
statistics. Non perturbative corrections(leading to the oscil-
lating terms) to this result have been worked out by using the
supersymmetry method[4]. This approach is valid only in
the s@1 limit except for systems with broken time reversal
invariance where it is supposed to hold for anys. In this
case,
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R2ss,gd = R2
pertss,gd + R2

oscss,gd
s5d

R2
oscss,gd = coss2psd

Dss,gd
2s2p2 ,

where Dss,gd is the spectral determinant associated to the
diffusion equation. For normal diffusionD−1ss,gd=PnÞ0

s1+s2/en
2d anden=gn2. In principle one may ask whether the

above formalism is applicable to the case of anomalous dif-
fusion. It turns out that formù2 this can be demonstrated by
mapping it onto an Anderson model with long range disorder
[28] (see below). For m,2, although the mapping is in prin-
ciple possible, we are not aware of a rigorous proof so our
results should be considered in this case as a conjecture.

The spectral correlations associated with classical inter-
mittency are now studied by using the above semiclassical
techniques. We evaluate Eq.(5) for different m and then we
investigate the long range spectral correlations by the analy-
sis of the number variance. We recall that the number vari-
ance S2sLd=kLl2−kL2l=L+2e0

L dssL−sdR2ss,gd measures
the stiffness of the spectrum. In the metallic regime, for ei-
genvalues separated less than the Thouless energy, fluctua-
tions are small andS2sLd, logsLd for L@1. Beyond the
Thouless energy spectral fluctuations get stronger and
S2sLd,Ld/2 whered is the dimensionality of the space. For
disorder strong enough eigenvalues are uncorrelated(Pois-
son statistics) and S2sLd=L. At the MIT, the number vari-
ance is asymptotically proportional toxL sx,1d with x be-
ing related with the multifractal scaling of the wave function
moments[27].

A. Case I: 1,m,2

This case corresponds with classical ballistic diffusion
kr2l~ t2 [14]. The propagator of the diffusion equation is
given by Eq. (2), Psen,sd=sm−2/ sism−1+end, D−1ss,gd
=PnÞ0s1+s2m−2/en

2d, en=gunum−1 (where periodic boundary
condition and assumed) and, by using Eq.(5), R2ss,gd
,gsm −1d−1

/s for s@1. The parameterb in Eq. (2) is related to
g as follows. For normal diffusionEc,b/L2 andg,bLd−2.
However, in our case, since the diffusion is ballistic,Ec
,b2m−3/L and g,b2m−3 for 1,m,2. We remark that the
scale invariance ofg may be modified by quantum correc-
tions as in the case of a two-dimensional weekly disordered
conductor. The number variance behaves asymptotically as
S2sLd,gsm −1d−1

L log L with a subleading linear term as at
the MIT. Additional work on the wavefunctions is needed to
fully characterize the quantum properties in this region.

B. Case II: m=2

In this case, D−1ss,gd=PnÞ0s1+s2/n2g2d=s1/g2d
3fp2s2/sinh2sps/gdg and R2ss,gd can be explicitly evalu-
ated,

R2ss,hd = h2 sin2spsd
sinh2sphsd

, s6d

whereh=1/g!1. Remarkably, this correlation function has
been put forward as a definition of critical statistics[9]. It

reproduces typical features at the MIT as level repulsion(for
s!1 coincides with Wigner-Dyson statistics) and sub-
Poisson number variance[S2sLd,hL for L@1]. In this case
h,1/b is also scale invariant. As discussed below, by map-
ping this case onto a Anderson model with long range disor-
der one can show that the wave functions are indeed multi-
fractal as at the MIT. Finally, we remark that the classical
motion associated tom=2 leads to 1/f noise[22].

C. Case III: 2 ,mÏ3

Now the dynamics is superdiffusive but sub-ballistics,
kr2l, t4−m [24]. Classical anomalous diffusion is described
by the propagatorPsen,sd=1/sis+end, D−1ss,gd=PnÞ0s1
+s2/en

2d with en=gunum−1. The asymptotic behavior of
R2ss,gd,s−2+1/sm−1d is power law instead of exponential. The
conductanceg is scale dependent and decreases as the sys-
tem size increases,Ec,L−2/s4−md, g,L1−2/s4−md. Fors@g, the
power law tail ofR2ss,gd leads toS2sLd,L1/sm−1d. Both the
scaling ofg and the spectral properties resemble those of a
weakly disordered conductor ind=2/sm−1d [28] dimen-
sions. Finally form=3 one recovers the expected behavior
S2sLd,xÎL of a 1D weakly disordered conductor(no
anomalous diffusion).

We mention that similar findings have been reported in
Anderson models with long range 1/rm−1 hopping[28]. For
2ømø3 the classical transport is also described by Eq.(2)
provided that the disorder is weak enough[29]. By using the
supersymmetry method not only the spectral correlations but
also the wave functions can be studied analytically. It turns
out that the eigenfunctions are power law localized[28]
ucsrdu, r−m+1. In the thermodynamic limit, they become lo-
calized form.2, delocalized form,2, and multifractal for
m=2 as at the MIT. Finally, we point out that typical features
of these long range hopping models as power law localiza-
tion and criticality also appears in higher dimensions[28].
Thus, ind dimensions, wave functions are power-law local-
ized for any exponentm and multifractal form=d+1.

We now discuss under what conditions the above findings
are relevant for deterministic Hamiltonians. Obviously a first
constraint is that the classical dynamics be described by Eq.
(2). As discussed previously this could be the case for non-
KAM systems [26] with a classical phase space homoge-
neously filled by cantori. Although the parameters defining
Eq. (2) may depend on the considered energy, numerical re-
sults [22] suggest that the in certain cases they are barely
modified in a broad window of energy and are close to the
ones leading to 1/f noise. From a quantum mechanical point
view our results are only valid in the limitg@1 where inter-
ference(not tunneling) is the dominant quantum feature. In
the context of quantum chaos this scale corresponds withĝ
,DW/", where" is the Planck constant andDW is the flux
swept across the cantorus with less flux at a given energy in
one iteration of the map. Our results are thus applicable for
energies such thatĝ@1. This limit corresponds to the case
when quantum mechanics can resolve the classical barrier.
For ĝ,1 quantum mechanics cannot resolve the gap and in
order to cross it must tunnel through it. We mention that
recently it has been reported[30] that the high energy exci-

CLASSICAL INTERMITTENCY AND THE QUANTUM… PHYSICAL REVIEW E 69, 066216(2004)

066216-3



tations of non-KAM systems such as the anisotropic Kepler
problem or the Coulomb billiard[26] are correlated accord-
ing to critical statistics. It would be interesting to check
whether the classical mechanics of these systems present 1/f
noise as predicted in this paper.

In conclusion, we have investigated quantum manifesta-
tion of classical intermittency. It has been shown that for
classical ballistic diffusion and 1/f noise(a special case of
intermittency) the spectral correlations are given by critical
statistics as at the MIT. In other cases the classical motion is
superdiffusive but sub-ballistic, the wave functions are
power law localized and the spectral correlations are similar

to those of a weakly disordered conductor in less than two
dimensions. In the context of Hamiltonian systems we have
suggested that these results may be relevant for the descrip-
tion of the spectral correlations of non-KAM systems with
classical phase space homogeneously filled by cantori.
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