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Classical intermittency and the quantum Anderson transition
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We investigate the properties of quantum systems whose classical counterpart presents intermittency. It is
shown, by using recent semiclassical techniques, that the quantum spectral correlations of such systems are
expressed in terms of the eigenvalues of an anomalous diffusion operator. For certain values of the parameters
leading to ballistic diffusion and ¥/noise the spectral properties of our model show similarities with those of
a disordered system at the Anderson transition. In Hamiltonian systems, intermittency is closely related to the
presence of cantori in the classical phase space. We suggest, based on this relation, that our findings may be
relevant for the description of the spectral correlations of Hamiltonians with a classical phase space homoge-
neously filled by cantori. Finally we discuss the extension of our results to higher dimensions and their relation
to Anderson models with long-range hopping.
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The quantum properties of a disordered system, namely, @nfortunately explicit results are hard to obtain since there is
noninteracting particle in a random potential are strongly afno general recipe to compute the eigenvalues of this operator
fected by both the dimensionality of the space and thefor a generic classical Hamiltonian.
strength of disorder. In less than three dimensions the wave As disorder strength further increasgs-1 localization
functions are localized in the thermodynamic limit for any effects become dominant and eventually the system under-
amount of disorder. In three and higher dimensions thergoes a MIT. At the MIT, the wave function momen

exists a metal insulator transitigMIT) for a critical amount present anomalous scaling with respect to the sampld &ize
of disorder. Thus for disorder below the critical one the wave Pq:fddr|lp(r)|2qocL—Dq(q—l), where D, is a set of expo-

{uncuor:stalre ext?n)t(j_ed Eh(rjoggh the Zample, tthe '_.'{ah":;iton'aﬂents describing the transition. Wave functions with such a
S accurately approximated by a random matrix With the aps,,nyivial scaling are said to be multifraci@r a review see
propriate symmetry, and the.spectral correlatlon.s are givep, ¢ [8]). Spectral fluctuations at the Mifcommonly re-
by Wigner-Dyson(WD) statistics[1]. In the opposite limit, ) '

wave functions are exponentially localized and the spectr flerlged tz aPs .C”t'cal Stqt's.'t'cs[’_?_]) farel |?termed|§te lbztvyeen |
correlations are described by Poisson statistics. A similaf/2 and Poisson statistics. Typical features include: scale

situation occurs in “quantum chaos.” The celebratednvariant spectruni10], level repulsion, and sub-Poisson
Bohigas-Giannoni-Schmit conjectufg] states that the wp humber varianc¢ll]. Different generalized random matrix
statistics applies to the spectral correlations of quantum sysnodel have been successfully employed to describe critical
tems whose classical counterpart is chaotic. On the othestatistics[12].
hand, it is broadly acceptefB] that Poisson statistics de- A natural question to ask is whether critical statistics is
scribes the spectral correlations of quantum systems whosdelated to any kind of classical motion. We shall show that,
classical counterpart is integrable. for a certain range of parameters, the spectral correlations of
Deviations from WD statistics due to wavefunction local- quantum systems whose classical counterpart presents inter-
ization has been intensively investigated in recent years. Imittency[13] and 1f noise are described by critical statis-
disordered systems, they are expressed through the dimeties. This is the main result of this work. We also suggest that
sionless conductancg=E./A where E.=%/t. is the Thou- our results may be useful to describe the spectral correlations
less energyt, is the classical time to cross the sample diffu- of non-KAM Hamiltonians with a classical phase space ho-
sively and A is the gquantum mean level spacing. In the mogeneously filled by cantori. The organization of the paper
metallic regimeg— o and WD statistics applies. Nonpertur- is as follows: Classical intermittency is introduced by study-
bative corrections due to a finig=>1 were recently evalu- ing the evolution of a simple nonlinear map. In the context of
ated by Andreev and Altshulgd] in the framework of the Hamiltonian systems, we also discuss its relation with clas-
supersymmetry methofb]. They managed to express the sical phase space structures Quantum spectral correlations
two level spectral correlation function in terms of the spec-associated with classical intermittency are then investigated
tral determinant of the classical diffusion operator. In theby using the above mentioned semiclassical Andreev-
context of quantum chaos deviations from WD statistics aréAltshuler formalism. Finally we discuss the extension of our
expected due to the nonuniversality of short periodic orbitgesults to higher dimensions and its relation with Anderson
(here we do not discuss other sources of deviation as dynodels with long range hopping.
namical localization or a mixed phase spada a recent
developmen{6], the two level spectral correlation function
encoding such deviations was found to be related to the spec-
tral determinant of the classical Perron-Frobenius operator The phenomenon of intermittency is characterized by
which controls the evolution of the classical phase spacdong periods of laminagregulay motion interrupted by short
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irregular burstg13]. As a simple example of a dynamical distribution eventually interrupted by random walks when
system with such features we investigate the following maphe trajectory escapes from the cantori region. The above
on the real line[13,14: X,.;=f(x,), where f(x) verifies  simplified model cannot, in principle, describe the full com-
f(x)=—f(-x) and f(x+N)=f(x)+N with N an integer. With  plexity of typical KAM Hamiltonians with a mixed phase
the above rules the map needs to be defined only in a respace where cantori with different scaling properties coexist
stricted intervalf (x,) =(1+€)x,+alX,|*—1, 0<x,<1/2, with  with pure chaotic and integrable compone(fsr a recent

z anda real numbers and— 0 is a small control parameter investigation in this direction see R¢23]). A different situ-
utilized to set the scale of the laminar phase. The lamina@tion occurs in Hamiltonians in which, due to the nonanaly-
motion has its origin at points,~ N wherex,.;~x,+1 and ticity of the classical potential, the KAM theorem does not
thus the orbit is transfered to the same position in the neighhold. In certain caseiR6], as a parameter is switched on, the
boring cell. In a continuous time this corresponds to ballisticwhole classical phase space undergoes an abrupt transition
motion. Eventually the orbit leaves the regior N and the ~ from integrable to homogeneously filled with cantori. The
dynamics becomes chaotic. The duration of the chaotic phag#sence of additional classical structures permits in this case
is typically much shorter than the ballistic one. We mentionutilize the formalism above explained though the details of
that due to universality15], intermittency appears for any P(r,t) may depend on the considered energy. Others class of
f(x) with a Taylor expansion fox<1 given by the above Systems with similar properties is that of pseudointegrable
relation. In Ref.[14] it was found that the density of prob- billiards[16], the phase space is also fractal and the classical
ability of staying in the laminar phase a tieor a distance ~motion presents anomalous transport propeftl#s1g.

r) has a power law tail

b
(L+r)»

II. QUANTUM MANIFESTATIONS OF CLASSICAL

(| - bt), D INTERMITTENCY

lﬂ(t,r) -~

where b=2%+¢e/2 and u=z/(z-1). Indeed the motion is We now investigate quantum manifestations of classical
superdiffusive[14] for 2< u <3 and ballistic for X u<2. intermittency by using semiclassical techniques. Our starting
Based on the above result, Zumofen and Klaf9] calcu-  point is the study of the connected two level correlation
lated the probabilityP(r,t) to be at location at timet in the  function

framework of the continuous random walk model

1 Ro(s,0) = AXp(e - s/2)p(e+8/2)) - 1, (4)

P(sk) ~—————=2< u<3,
(8K is + blk|+ 1" H
g2 (2) wherep(e) is the density of states at energyA is the mean
— 1< u<2, level spacing, the energyis expressed in units &, and the
is#~t+ blk|# averaging is over an ensemble for disordered systems and

. . A over an interval of energy for single deterministic chaotic
whereP(s, k) is the Fourier transform dP(x,t) andb~bup  gystems. The spectral properties depend on the ratio

to factors of order the unity. For2 u<3, the above equa- g=E_./A. In the ergodic limitg— =, the Hamiltonian can be
tion is a solution of the following fractional Fokker Planck accurately approximated by a random matrix with the appro-

equation(for a recent review see Re[20]), priate symmetry and WD statistics applies. For instance, for
PXD b gl broken time reversal invariancBy(s,0)=-sir’(ms)/ m°s>.
at, - §§|X|M_1P(x,t) = 8(x) 8(t), (©)] Perturbative correction@>1 ands>1) to this result are

evaluated 11] by simple perturbation theory,

where we define the fractional derivative as in HéD].

The phenomenon of intermittency in Hamiltonian systems
has been reIateﬁZl_,Z@ to _the presence of ca_nto[23] in. RB®"(s,g) = 1 Re> P2(e,,9),
phase space. A trajectory is typically trapped in the intricate 27 n
cantori structures for times “long” as compared with those
involved in the transport through the pure chaotic phase
space. Meiss and co-workef&1] described the transport whereP(e,,s) is the propagator of the diffusion equatifin
through cantori in phase space as a random walk in a Betheur case Eq(2)], ¢, are the eigenvalues of the diffusion
lattice. Such a simplified model predicts a power law tail forequation, anch runs over the integers. As expected, the low-
the waiting times inside a cantori in agreement with numeri-est moden=0 reproduces the asymptotic form of the WD
cal simulationg24]. Details of the distribution as the decay statistics. Non perturbative correctioisading to the oscil-
exponent are sensitive to the scaling properties of the cantolating termg to this result have been worked out by using the
which depend on the considered energy and are thus nonursupersymmetry methof##]. This approach is valid only in
versal. Since waiting times in phase space lead to ballistithe s>1 limit except for systems with broken time reversal
motion in real spacg22], a trajectory in real space is a invariance where it is supposed to hold for asyln this
mixture of long ballistic flights governed by a power-law case,

066216-2



CLASSICAL INTERMITTENCY AND THE QUANTUM... PHYSICAL REVIEW E 69, 066216(2004)

Ry(s,9) = Rb®(s,0) + R9*(s,0) reproduces typical features at the MIT as level repulgfon
(5) s<1 coincides with Wigner-Dyson statisticsand sub-
D(s,g) Poisson number variang&?(L) ~ hL for L>1]. In this case

R3*(s,g) = cog2ms) Py h~1/b is also scale invariant. As discussed below, by map-

ping this case onto a Anderson model with long range disor-
where D(s,q) is the spectral determinant associated to theder one can show that the wave functions are indeed muilti-
diffusion equation. For normal diffusiorD‘l(s,g):Hm&O fractal as at the MIT. Finally, we remark that the classical
(1+s%/€2) ande,=gr? In principle one may ask whether the motion associated tp=2 leads to 11 noise[22].
above formalism is applicable to the case of anomalous dif-
fusion. It turns out that fop = 2 this can be demonstrated by C.Case lll: 2<u<3
mapping it onto an Anderson model with long range disorder

A Now the dynamics is superdiffusive but sub-ballistics,
[28] (see below. For 4 <2, although the mapping is in prin- r?y~t** [24]. Classical anomalous diffusion is described
ciple possible, we are not aware of a rigorous proof so ou

— H -1 —
results should be considered in this case as a conjecture. > the prppagatorP(erl,ls)—1/(|s+en), D .(S’g)_H“fO(l
+s?/ &) with €,=gn|**. The asymptotic behavior of

The spectral correlations associated with classical inter- 2l | . :
mittency are now studied by using the above semiclassicdfe(S:9) ~S =" is power law instead of exponential. The
techniques. We evaluate E@) for different « and then we ~conductancey is scale ‘{gﬁ?”;je”t a?_ozll((j_et):reases as the sys-
investigate the long range spectral correlations by the analy'€™ Size increaseg, ~L ="+, g~ li,g Egrs»g, the
sis of the number variance. We recall that the number variPOWer law tail ofRy(s,g) leads toX (L) ~L*"#"". Both the
ance EZ(L):<L>2—<L2>:L+2f5 ds(L-9)R,(S,g) measures scaling ofg and the spectral properties resemble those of a

the stiffness of the spectrum. In the metallic regime, for ei-Weakly disordered conductor id=2/(u~1) [28] dimen-

genvalues separated less than the Thouless energy, fluct@ons: Finally foru=3 one recovers the expected behavior
tions are small and2(L)~log(L) for L>1. Beyond the =(L)~xVL of a 1D weakly disordered conductdno
Thouless energy spectral fluctuations get stronger angnomalous diffusion _
S2(L)~L92 whered is the dimensionality of the space. For We mention that .S|m|lar findings have bgen reported in
disorder strong enough eigenvalues are uncorrelgeds- Anderson models with long range 7™ hopping[2§]. For
son statisticsand S2(L)=L. At the MIT, the number vari- Zs,@sS the class[cal tran_sport is also described _by 2y.
ance is asymptotically proportional fd (y<1) with y be- provided that the disorder is weak enoJ@g]. By using the

ing related with the multifractal scaling of the wave function supersymmetry met_hod not only the _spectral C(_)rrelatlons but
moments[27]. also the wave functions can be studied analytically. It turns

out that the eigenfunctions are power law localiZ&8]
A. Case I: 1< p<2 |yd(r)| ~r~#*1, In the thermodynamic limit, they become lo-

. . . .. ... calized foru>2, delocalized foru<2, and multifractal for
2Th|§ case corresponds with classpal balllstlc d'ﬁus'pn,u=2 as at the MIT. Finally, we point out that typical features
(r9)e<t® [14]. The propagator of_;he_z dJIfusmn eq_llJat|on 'S of these long range hopping models as power law localiza-

given by Eq. (2), P(e,s)=s"%/(is*"+ey), D7(sS,9)  tion and criticality also appears in higher dimensig@sj.
=Tl4o(1+5%#7%/ &), e;=gIn[*™* (where periodic boundary Thys, ind dimensions, wave functions are power-law local-
condition and assumgdand, by using Eq.(5), Rx(s,9)  ized for any exponent and multifractal foru=d+1.
~g(“‘1)71/sfor s>1. The parametdsin Eg.(2) is related to We now discuss under what conditions the above findings
g as follows. For normal diffusiofE,~b/L% andg~bL%2  are relevant for deterministic Hamiltonians. Obviously a first
However, in our case, since the diffusion is ballistif,  constraint is that the classical dynamics be described by Eq.
~b?*73/L and g~b?3 for 1<u<2. We remark that the (2). As discussed previously this could be the case for non-
scale invariance off may be modified by quantum correc- KAM systems[26] with a classical phase space homoge-
tions as in the case of a two-dimensional weekly disorderedieously filled by cantori. Although the parameters defining
conductor. The number variance behaves asymptotically &§g.(2) may depend on the considered energy, numerical re-
EZ(L)Ngw—D‘lL logL with a subleading linear term as at sults_ [_22] suggest that_ the in certain cases they are barely
the MIT. Additional work on the wavefunctions is needed to modified in a broad window of energy and are close to the

fully characterize the quantum properties in this region. ~ ©nes leading to If/noise. From a quantum mechanical point
view our results are only valid in the limg> 1 where inter-

B. Case Il: u=2 ference(not tunneling is the dominant quantum feature. In

. -1 _ 2 o\ _ 2 the context of quantum chaos this scale corresponds dvith
In this case, D7X(s,g)=Il,.o(1+s’/n°g?)=(1/g?) ~ AW/, wheref: is the Planck constant ankW is the flux
X [m?s?/sint?(ms/g)] and Ry(s,g) can be explicitly evalu- : . .
ted swept across the cantorus with less flux at a given energy in
ated, one iteration of the map. Our results are thus applicable for
, Siré(m9) energies such thaj>1. This limit corresponds to the case
Ry(s,h)=h Sinf(mhs’ (6)  when quantum mechanics can resolve the classical barrier.

For g~ 1 quantum mechanics cannot resolve the gap and in
whereh=1/g<1. Remarkably, this correlation function has order to cross it must tunnel through it. We mention that
been put forward as a definition of critical statisti&]. It recently it has been reportg¢d0] that the high energy exci-
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tations of non-KAM systems such as the anisotropic Kepleto those of a weakly disordered conductor in less than two
problem or the Coulomb billiar¢26] are correlated accord- dimensions. In the context of Hamiltonian systems we have
ing to critical statistics. It would be interesting to check suggested that these results may be relevant for the descrip-
whether the classical mechanics of these systems present 1tion of the spectral correlations of non-KAM systems with
noise as predicted in this paper. classical phase space homogeneously filled by cantori.

In conclusion, we have investigated quantum manifesta-
tion of classical intermittency. It has been shown that for
classical ballistic diffusion and I/noise(a special case of
intermittency the spectral correlations are given by critical  Discussions with Patricio Leboeuf, Yan Fyodorov, and
statistics as at the MIT. In other cases the classical motion i¥ladimir Kravtsov are gratefully acknowledged. This work
superdiffusive but sub-ballistic, the wave functions arewas supported by the European Union network “Mathemati-
power law localized and the spectral correlations are similacal aspects of quantum chaos.”
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